IPSJ SIG Technical Report

15A107f

IoTPOT: A Novel Honeypot for Revealing Current IoT Threats

YIN MINN PA PA, SHOGO SUZUKI"
KATSUNARI YOSHIOKA, TSUTOMU MATSUMOTO'!
TAKAHIRO KASAMA™ CHRISTIAN ROSSOW ™

We analyze the increasing threats against IoT devices. We show that Telnet-based attacks that target IoT devices have rocketed
since 2014. Based on this observation, we propose an IoT honeypot and sandbox, which attracts and analyzes Telnet-based
attacks against various IoT devices running on different CPU architectures such as ARM, MIPS, and PPC. By analyzing the
observation results of our honeypot and captured malware samples, we show that there are currently at least 5 distinct DDoS
malware families targeting Telnet-enabled [oT devices and one of the families has quickly evolved to target more devices with as

many as 9 different CPU architectures.

Keyword: IoT, Honeypot

1. Introduction *

Since years, it is known that many Internet of Things (IoT)
devices are vulnerable to simple intrusion attempts, for example,
using weak or even default passwords [1]. In 2012, Carna botnet
[2] revealed that there were more than 1.2 million open devices
that allowed logins with empty or default credentials. In January
2014, an Internet-connected fridge was discovered as a part of a
botnet sending over 750,000 spam e-mails [3]. In December
2014, online DDoS services (i.e. booters) knocked down Sony
and Microsoft’s gaming networks, presumably powered by

thousands of compromised IoT devices such as home routers [4].

From an attacker’s point of view, IoT devices are attractive
playgrounds, as—as opposed to PCs—they are 24/7 online, have
no antivirus installed, and weak login passwords give attackers
an easy access to powerful shells (such as BusyBox [5]). Seeing
these trends, we believe that IoT devices are an important new
area of security research.

In this paper, we investigate the threat of IoT device
compromises in the masses. We first analyze Telnet-based scans
in darknet, revealing that attacks on Telnet have rocketed since
2014. Moreover, by grabbing Telnet banners and web contents
of the attackers, we show that the majority of attacks indeed
stem from IoT devices.

Motivated by this, we propose [oTPOT, a novel honeypot to
emulate Telnet services of various IoT devices to analyze
ongoing attacks in depth. IoTPOT consists of a frontend
backend
high-interaction virtual environments called IoTBOX. IoTBOX

low-interaction responder cooperating with
operates various virtual environments commonly used by
embedded systems for different CPU architectures. During 81
days of operation, we observed 481,521 download attempts of
malware binaries from 79,935 visiting IP addresses. We also

confirm that none of these binaries could have been captured by

* 11 Yokohama National University,Japan
12 National Institute of Information and Communications Technology,Japan
+3 Saarland University, Germany.

existing honeypots that handle the Telnet protocol such as
honeyd and Telnet password honeypot because they are not able
to handle different incoming commands sent by the attackers.
We manually downloaded 106 distinct malware samples and
found out that they run on 11 different CPU architectures.
Among 106 collected samples, 88 samples were new to the
database of VirusTotal [6] (as of 2015/06/26) showing a gap of
capturing utilities for this type of threat. Out of 18 samples in
VirusTotal, 2 of them were not detected by any of the 57
antivirus software of VirusTotal (as of 2015/06/26).

In order to analyze these captured malware binaries, we propose
[IoTBOX, the first malware analysis environment for IoT
devices. [oTBOX supports 8 CPU architectures, spanning MIPS,
ARM, and PPC. The sandbox analysis of 25 samples by
[oTBOX revealed that the samples are used to perform 11
different types of DDoS attacks, port 23 scans and scans on
UDP (port 123, 3143) and TCP (port 80,8080,5916).

Finally, combining the observations results of IoTPOT with the
sandbox analysis by [oTBOX, we confirm that i) there are at
least five distinct malware families spreading via Telnet, ii) their
common behavior is performing DDoS and the further
propagation over Telnet, iii) some families evolve quickly,
updating frequently and shipping binaries for a variety of CPU
architectures, even in the limited observation period of 81 days.
Following is the summary of our contributions:

1) We point out a huge increase of Telnet-based attacks and
the involvement of IoT devices.

2) To analyze the scope and variety of the attacks, we
propose a novel honeypot called IoTPOT, which mimics
10T devices and captures Telnet-based intrusions.

3) We further analyze the threats and propose IoTBOX,
which enables us to run the captured malware on 8§
different CPU architectures.

4) We reveal that there are at least five DDoS malware
families targeting IoT devices.

5) We analyze the architectures of IoT botnets and point out
that there are at least 8 different types of botnet

Part of the results of this paper will be presented at the 9" USENIX Workshop on Offensive Technologies (WOOT’15).

IPSJ SIG Technical Report 15A107f

architectures including the worm type botnet.

250 2

The rest of the paper is organized as follows: Sect. 2 explains #of Packets 18
our preliminary investigations on Telnet-based attacks. Sect. 3 200 | # of Unique Hosts 16
describes [oTPOT and Sect. 4 IToTBOX. In Sect. 5, we describe g 14
the overview of ongoing attacks revealed by our analysis. In é:m il 1.2§
Sect. 6, related works are presented. Finally, in Sect. 7 the & ‘—E
conclusion and future works are explained. § ' i

g 100 : 0.8 g

3 : o5 g
2. Investigation on Telnet-based Attacks - A L1
Until now, there are only anecdotal reports on Telnet-based § 1oz
compromises. In this section, we investigate how the situation of 0 o
Telnet-based compromises has changed. To this end, we analyze Q&@” Q&&“ Q&@“ &\@@’ &\0“ Q&& &\@x Q&@” Q&& &\@“‘ QN\N”
a darknet of NICTER [7], Japan’s darknet monitoring system S T‘Q’\’\ S

ime

that monitors over 209,000 IP addresses presently.

Figure 1 shows the traffic on 23/TCP since 2005, both in terms
of packets and source IP addresses per day (averaged over all IP
addresses in the darknet). The data shows a recent increase of

Figure 1 - Packets and hosts on 23/TCP per day per darknet IP

Table 1 - Scanning hosts and device models
scans for Telnet. According to the previous study [8], the large

peak in the end of 2012 is caused by the activities of the Carna Device Type Host Device
botnet, created by an anonymous hacker for Internet Census by Count | Model Count
compromising a large number of IoT devices such as routers [2]. DVR 1,509 19
Since 2014, even after the deactivation of the Carna botnet, both IP Camera 523 16
the number of packets on 23/TCP and their senders have rapidly Wireless Router 118 45
increased and dominated the darknet — observing more than Customer Premises Equipment 65 1
209,497 average scanning sources per day, which is 52.5% of all Industrial Video Server 22 1
sources, in the darknet in the first week of March 2015. TV Receiver 19 2
We used pOf for passive OS fingerprinting [9] and determined Heat Pump 10 1
that among the scanning 29,844 hosts (sampled from 148 Environment Monitoring Unit

darknet IP, 2015/03/05 to 2015/03/10), 91% of them runs Linux. (EMU) System 9 1
We also connected back to these hosts on 23/TCP and 80/TCP, Digital Video Scalar

collected Telnet banners and web contents if any, and manually Router

categorized them by device types. For example, if there is a

telling keyword such as “DVR” in HTTP title, we categorize

this device as Digital Video Recorder (DVR). If not, we search

on the Internet using the HTTP title as keyword and carefully Telnet Client Telnet Server

categorize devices by reading available manuals. We also group 3-way handshake

device models of a particular device type by different HTTP -

titles. For example, HTTP titles such as “NetDVrV1” and Telnet options]

“NetDvrV3” will be counted as two device models of DVR Welcome Message L Banners
device type. With this way, we found more than 34 different & Login Prompt

types of IoT devices including 19 different models of the DVR, =

16 models of IP Camera, 45 models of wireless routers. username /pass

Moreover, devices such as a metrological satellite, heat pumps, Authentication

a parking management system, a fire alarm system, solid state -
recorders and a TV have scanned our darknet on 23/TCP. Table command

1 shows top ten attacking hosts and device models of inferred

device types. These results show that various IoT devices are ahid auddiad ~ Command
already involved in the ongoing attacks. Interactions
3. IoT Honeypot (IoTPOT)

Our preliminary investigation on Telnet-based attacks implies Figure -2 Telnet Protocol

that there are a number of IoT devices being compromised and

IPSJ SIG Technical Report

misused to search and attack other IoT devices. In order to study
these attacks in depth, we propose IoTPOT, a novel honeypot
that emulates interactions of the Telnet protocol and a variety of
IoT devices.

3.1 Telnet Protocol

Before explaining IoTPOT, we briefly revisit the Telnet
protocol [10]. Figure 2 illustrates the interactions between client
and the server on Telnet. After the TCP 3-way handshake, the
client and the server can exchange Telnet options. Either the
Telnet server or the client can initiate a request such as “Do
Echo”, a request for echo back and “Do NAWSs” a request to
Negotiate About Window size (NAWSs). After exchanging
options, the server sends a welcome message to the client,
immediately followed by the login prompt. For example,
“BCM96318 Broadband Router” as the welcome message and
“Login:” as the login prompt. In this paper, we call the above
initial part of interactions banner interactions. Then, the client
sends a pair of username/password to log in to the server. We
call this part authentication. Finally, if the credentials are valid,
the client logs in and instructs the server using various shell
commands. We call this part command interactions.

3.2 IoTPOT Design

The Telnet protocol already highlights a few challenges for our
honeypot design. First, we need to support options that the
attacking clients choose to use. Second, we aim to provide a
realistic welcome message and login prompt, to deal with
situations where an attacker specializes in compromising certain
devices only. Third, we want to allow for logins, while we also
want to observe characteristics in the authentication interactions
(e.g., sequences of usernames/passwords). Finally, independent
from the Telnet protocol, our honeypot should support multiple
CPU architectures to capture malware across devices. Our
honeypot is designed to support these features.

In order to emulate different devices, we collected these banners
from the Internet by performing Telnet scans with the masscan
tool [11]. From all collected banners, we prioritized banners of
hosts that have accessed our honeypot. Considering a
self-spreading nature of these attacks, these attacking hosts can
also be considered as already compromised victims, which
should be emulated by our honeypot.

In the next step, during the authentication, IoTPOT supports
various tactics. For example, it can be configured to reject any
authentication credentials to observe login attempts, to allow
immediate authentication regardless of the login, to accept only
certain credentials, or reject the first attempts and eventually
accept a login. Finally, during a command interaction, the
frontend responder of IoTPOT replies known commands from
attackers and unknown commands are redirected to backend
embedded Linux OSs of different CPU architectures. As each
IoT device runs on a different CPU architecture, we prepare a
set of embedded Linux OS on different CPU architectures to
handle the interactions of various devices.

15A107f

3.3 I0TPOT Implementation

Figure 3 is the overview of IoTPOT. The heart of IoTPOT is
Frontend Responder, which acts as different IoT devices by
handling incoming TCP connection requests, banner interactions,
authentication, and command interactions with a set of device
profiles.

A device profile consists of a banner profile, an authentication
profile, and a command interaction profile. Banner profiles
determine the responses of the honeypot for banner interactions,
namely Telnet options, a welcome message, and a login prompt.
Authentication profiles determine how to respond to incoming
authentication challenges. The command interaction profile
determines the responses to incoming commands, consisting of
a set of commands and their corresponding responses.

When an incoming command is not known yet, Frontend
Responder establishes a Telnet connection with a backend
IoTBOX and forwards the command to it. [ocTBOX is a set of
sandbox environments that run Linux OS for embedded devices
with different CPU architectures. When an incoming command
does not match with any commands in the command interaction
profile, thus unknown to Frontend Responder, it establishes a
Telnet connection with a backend IoTBOX and forwards the
command to it. [ocTBOX is a set of sandbox environments that
run Linux OS for embedded devices with different CPU
architectures. Namely, if an unknown command from an
attacker comes to Frontend Responder with the device profile of
some device X assigned, we forward the unknown commands to
the sandbox running the CPU architecture of the device X.

As described later, banner profiles are collected by banner
grabbing of IoT devices visiting to [oTPOT and their respective
CPU architectures are manually chosen by carefully reading a
device manual and the maker’s website. If we cannot find
explicit CPU information of a particular IoT device, we refer to
the list of applications for each CPU architecture
[12][13][14][15][16].

Frontend Responder forwards a response from IoTBOX to the
client. Note that the incoming commands forwarded to [oTBOX
may cause malware infections or a system alteration. Therefore,
we reset the OS image occasionally. Moreover, IoTBOX in
IoTPOT is used as a high interaction system to reply to
commands unknown to the Frontend Responder as a component
of IoTPOT. We also use IoTBOX independently for analyzing
captured malware binaries. The detailed explanation of [ocTBOX
is in Section 4.

The Profiler parses the interaction between Frontend Responder
and IoTBOX, extracts the incoming command and the
corresponding response, and updates the command interaction
profile so that Frontend Responder can further handle the same
command without interacting with [oTBOX. Another important
function of Profiler is the collection of banners from devices on
the Internet. The Profiler operates in two banner grabbing
modes: active scan mode and visitor scan mode. In active scan
mode, Profiler scans different networks to collect banners from
various devices. In the visitor scan mode, it connects back to
hosts who visit our honeypot and grabs the banners.

IPSJ SIG Technical Report

The Downloader component examines the interactions for
download triggers of remote files, such as malware binaries. In
particular, we download from all URLs we observed via
commands such as wget, ftp, and tfip.

Finally, network communications between Frontend Responder
and [IoTBOX are controlled by Manager implemented by
iptables [17].

{W\X
_— Internet)
- Scan
1t
Downloader |-~ *
1 Profiles
Telnet
Erantand |

+
Erant and Banners

Front end <::

Authentication Profiler ‘

' Command '

: Interaction
Manager | Unknown([-oooooooeo
Commands ||~ Learnt command

Responder

10TBOX interactions

inmpnsoer > Multiple CPU
Architectures

Figure 3 - Overview of IoTPOT

3.4 Observation Results

IoTPOT setup: We operated [oTPOT in two different
periods: Trial operation period and stable operation period. In
the trial operation period from 2014/11/07 to 2015/03/31, we
had tried different configurations, device profiles, and
assignment of IP addresses in a ad-hoc manner trying to
understand the attackers’ behavior and discussing the proper
setting of the honeypots. In the stable operation period from
2015/04/01 to 2015/06/20, we deployed IoTPOT on 87 IP
addresses, used 29 banner profiles assigning each to three IP
addresses. We set authentication profiles to accept any
challenges and prepared a single command interaction profile,
manually created from one of the most widely exploited DVR
brands [18]. The backend IoTBOX contained an embedded
Linux OSs of Debian [19] and OpenWrt [20] on 8 different CPU
architectures emulated by QEMU [21]. Downloader was not
fully implemented so we manually downloaded and collected
malware binaries.

Summary of Observations: During 81 days of the stable
operation, 180,581 hosts visited [oTPOT. Among them, 130,314
successfully logged in and 79,935 attempted to download
external malware binary files. We observed 481,521 download
attempts in total. We manually downloaded 106 malware
binaries of 11 CPU architectures. Among 106 collected samples,
88 samples were new to the database of VirusTotal (as of
2015/06/26). Out of 18 samples that were in VirusTotal, 2 of
them were not detected by any of the 57 antivirus software of
VirusTotal (as of 2015/06/26).

General Flow of Telnet Attacks: We observed three typical
steps of compromise: 1) The first stage of attack is intrusion, in
which attackers attempt to login to our honeypot. The intrusion

15A107f

normally starts from scanning the targets and then
dictionary-based authentication challenges. 2) The second stage
after the successful intrusion is infection, in which attackers
send a series of commands over Telnet to check and customize
the environment, download and execute the external binaries. 3)
The third stage after the infection is monetization, in which
executed binaries are controlled by the attackers through C&C
to conduct the intended malicious activities such as DDoS
attacks and spreading of malware. Note that we intend to
observe the intrusion and the infection by IoTPOT and after
malware binaries are captured by IoTPOT, we conduct a
sandbox analysis using IoTBOX. Thus in this experiment,
IoTBOX is utilized in two ways, as a backend component of
IoTPOT and as an independent sandbox analysis environment
for analyzing the obtained binaries. The following subsections
highlight some points noticed for each attack stage. The overall
relationships among attacks observed at different stages are
summarized in Sect. 5.1.

3.4.1 Stage 1: Intrusion

We recognize two major intrusion behaviors: login attempts
with a fixed or a random order of credentials. Table 2 shows the
major login patterns observed by IoTPOT. Fixed challenge
order, “Fixed Order”, in Table 2 means attackers try to login to
IoTPOT with a sequence of id and password pairs in a fixed
order. For example, in the case of a pattern name, “Fixed Order
17, the attacker’s challenge always starts from “root/root” as
user id and password to login to IoTPOT. Then, the pairs,
“root/admin”, “root/123”, “root/12345” come in a fixed order of
sequence till it reaches to “admin/admin”. Thus, for the fixed
login sequences, we can reasonably infer that these challenges
are from malware sharing the same implementation of
dictionary attacks. “Fixed order 2” in Table 2 is quite a long list,
thus, we show only top sequences. Random challenge order
means attackers try to login to IoTPOT with a sequence of id
and password pairs in a random order. Thus, in case of
“Random Order 17, it is not always true that “root/admin” will
come after “root/root”.

Table 2 - Major log in patterns observed by IoTPOT

Pattern Name Challenge Order Username/Pass

Fixed l(’rdcr Fixed Order

R"‘"""l‘ Order Randem Order

Fixed Order Fixed Order
2

Random Order Random Order

l'l\l'd:’fd" Fixed Order

Random Order Random Order

IPSJ SIG Technical Report

3.4.2 Stage 2: Infection

After successfully logged in to honeypot, attackers check and
customize the environment to prepare the download of a
malware binary by sending a series of commands over Telnet.
Table 3 summarizes the 10 major patterns of command
sequences observed by IoTPOT. Note that some of the patterns
were observed only in the trial operation period for parameter
tuning and we do not have credible counts of these patterns. We
believe most infection activities are automated as exactly the
same pattern of commands are repeatedly observed and also the
intervals between the commands are very short.

We name each pattern by the characteristic string it contains.
For example, the patterns named ZORRO 1, ZORRO 2 and
ZORRO 3 all have the common string “ZORRO” in their
command sequences. Moreover, we can see the attacker’s
common intension among them. Namely, all three patterns of
ZORRO try to remove many existing commands and files under
/usr/bin, /bin/, etc, and prepare a customized command for
downloading an external malware binary file. With this setup,
other intruders would have difficulty to abuse the system. A
similar intension of attackers can be seen in the case of a pattern
named GAYFGT. Although it does not alter the commands,
instead it activates iptables [17] to drop incoming telnet
connection requests. GAYFGT also has a functionality to kill
other existing malicious processes. All these activities explained
above come in a form of commands over Telnet except that
GAYFGT downloads and executes shell script file to do it.
Although there are diversities in attackers’ behavior at the
infection stage, they all have a common goal of downloading
and executing malware binary file. One more common
behaviors we found is checking whether the shell is usable
properly or not by echoing a particular string in all families. If
the appropriate reply for the echo command is not received, the
attacker stops the attacks.

Comparison with honeyd: We confirmed that honeyd [22]
cannot handle these commands in Table 3 and therefore cannot
capture malware binaries observed by IoTPOT. Namely, honeyd
failed to respond to the very first few commands such as “cat
/bin/sh” in case of the ZORRO family and appropriate reply for
the first echo command of GAYFGT, nttpd and KOS family and
so the attacker stopped sending any further commands.

Clustering of binaries captured by IoTPOT: Within the first 39 days
of operation of IoTPOT (From April 1, 2015 to May 9, 2015),
the collected 43 samples are not obfuscated and relatively easy
to cluster by checking whether these binaries contain certain
characteristic strings or not. Namely, we classified the binaries
based on the hardcoded human readable strings contained in the
malware binaries such as strings for C&C commands, Linux
commands and file names. We analyze the strings in binaries
using the strings command of Linux. Table 4 summarizes results
of manual clustering of the collected samples based on the
common strings in the binaries.

Within the last 42 days of operation of IoTPOT (From May 10,
2015 to June 20, 2016), the number of captured malware
increased more than double (Total 106 samples). Some of the
binaries are obfuscated and so the approach to cluster the

15A107f

binaries using just strings command is then difficult. We need to
find a better way to cluster these obfuscated binaries. This will
be future works for us. Thus, for Bin 44 to Bin 106 of Appendix,
samples we newly captured within the last 42 days, we cluster
them into the same group if the command sequence from an
attacker is similar to the previously categorized 43 samples.

Table 3 - Patterns of command sequence observed by IoTPOT

Pattern Name Pattern of Command Sequence

1. Check type of victim shell with command “sh”

2. Check error reply of victim by running non-existing command such
as ZORRO.

3. Check whether wget command is usable or not.

4. Check whether busybox shell can be used or not by echoing ZORRO.

5. Remove various command and files under /usr/bin/, /bin, var/run/, /

ZORRO 1 dev.

6. Copy /bin/sh to random file name

7. Append series of binaries to random file name of step 6 and make
attacker’s own shell

8. Using attacker’s own shell, download binary . IP Address and port
number of malware download server can be seen in the command.

9. Run binary

1. Check type of victim shell with command “sh™

2. Check error reply of victim by running non-existing command such
as ZORRO.

3. Check whether wget command is usable or not.

4. Check whether busybox shell can be used or not by echoing ZORRO.

5. Remove various command and files under /usr/bin, /bin, var/run, /
dev.

ZORRO2 6. Copy /bin/sh to random file name

7. Append series of binaries to random file name of step 6 and make
attacker’s own shell

8. Using attacker’s own shell, download binary . IP Address and port
number of malware download server cannot be seen in the command
because it is hard coded in the attacker’s own shell.

9. Run binary

1. Check type of victim shell with command “sh™

2. Check error reply of victim by running non-existing command such

as ZORRO.

3. Check whether wget command is usable or not.

4. Check whether busybox shell can be used or not by echoing ZORRO.

5. Remove all under /var/run, /dev, /tmp, /var/tmp

ZORRO 3 6. Copy /bin/sh to random file name

7. Append series of binaries to random file name of step 6 and make
attacker’s own shell

8. Using attacker’s own shell, download binary. IP Address of malware
download server can be seen in the command and port number
cannot be seen in the command

9. Run binary

1. Check error reply of victim by running non-existing command such

as “enable” or “shell”.
2. Check type of victim shell with command “sh™
3. Remove all under /var/run, /dev, /tmp, /var/tmp
ZORRO4 4. Copy /bin/sh to random file name

5. Append series of binaries to random file name of step 4 and make
attacker’s own shell

6. Using attacker’s own shell, download binary. IP Address of malware
download server can be seen in the command and port number
cannot be seen in the command

7. Run binary

1. Check whether shell can be used or not by echoing “gayfgt”

2. Download shell script.

SAYFGT 1 3. Using downloaded shell script, Kill previously running malicious
process, download malware binaries of different CPU architectures
and block 23/TCP in order to prevent other infection.

4. Run all downloaded malware binaries.
1. Check type of victim shell with command “sh™
2. Download shell script.
3. Using downloaded shell script, download malware binaries of
GAYFGT 2 different CPU architectures.
4. Run all downloaded malware binaries.
5. Make sure shell is Busybox by echoing binary that will encode into
| “gayfgt” only in Busybox shell.
1. Download shell script using wget command .
*.sh 2. Using downloaded shell script, download malware binaries of
) different CPU architectures.

3. Run all downloaded malware binaries.
1. Check whether shell can be used or not by echoing “welcome”

nttpd 1 2. Download binary to /tmp directory.
3. Run Binary.
[1.” Check whether shell can be used or not by echoing “welcome™
2. Remove file names, .nttpd and .drop, from /tmp directory.

nttpd 2 3. Make new file names, .nttpd and .drop.
4. Append binaries of malware through Telnet commands to .drop file.
5. Run Binary
1. Check whether shell can be used or not by echoing “ $?

KOSTYPE"
2. List /proc/self/exe
KOS 3. Check all running process

4. Download malware binary using tftp to /mnt folder
5. Run Malware
6. Check CPU information 5

IPSJ SIG Technical Report

Table 4 - Clustering results of collected samples by

characteristic strings in the binaries

Family Name Common Strings in Binaries
YESHELLO

killattk

SCANNER ON [OFF

bin.sh

Bin 10 to Bin 41 [bin2.sh

bin3.sh

echo -e "\x67\x61\x79\x66\x67\x74"
sh -c"cd /tmp ; rm -f .nttpd ; wget -O .nttpd
Bin 42 http://%d.%d.%d.%d:%d ; chmod +x
.nttpd ; ./.nttpd”

0916.davinci

Bin 43 0923.davinci

0923.8196

Bin 1 - Bin 9

3.4.3 Stage 3 Monetization

IoTPOT can only observe intrusion and infection stages
explained in 3.4.1 and 3.4.2. Thus, in order to further reveal how
attackers are trying to monetize the compromised devices, we
analyze the malware binaries collected by IoTPOT using
IoTBOX as an independent malware sandbox. We show the list
of samples in the Appendix. The sandbox analysis results of
some of the binaries are described in Section 4.

4. 10T Sandbox (IocTBOX)

IoTBOX is used not only as high interaction systems in IoTPOT
but also as a stand-alone multi-architecture sandbox. The design
of IoTBOX used for two purposes is the same and only routing
policies are different for each purpose. So we discuss about
IoTBOX design in general first and then explain consecutively
how we define routing policies for IoTBOX in IoTPOT and
IoTBOX as a stand-alone multi-architecture sandbox in section
4.1.

4.1 IoTBOX Design

IoTBOX supports 8 different CPU architectures, namely as
MIPS, MIPSEL, PPC, SPARC, ARM, MIPS64, sh4 and X86.
The design of IoTBOX is shown in Figure 4. To support
different CPU architectures, we need a cross compilation
environments. We thus choose to run respective platforms (OS)
on an emulated CPU using QEMU [21], an open source
processor emulator. Then, we use the respective OpenWrt
platform to run on the emulated CPU environment. OpenWrt is
a highly extensible GNU/Linux distribution for embedded
devices of (typically OS of wireless routers) [20]. To install
OpenWrt, we use OpenWrt Builtroot, which is a build system
for the distribution and it works on Linux, BSD or MacOSX.
Next to OpenWrt, IoTBOX also supports Debian Linux.

We design [oTBOX to be able to implement in a single physical
machine. Thus we need a virtual network environment in order
to connect a physical interface of host machine with many
virtual interfaces of QEMU based virtual machines. The
following explains how we create a virtual networking
environment in a single physical machine.

We first create a virtual switch, which is a multiport Linux
bridge [23] that connects physical interface (ethO of host
machine) at one side of the bridge and many different virtual
interfaces (ethO of each virtual machine) at the other side of the

15A107f

bridge. In order to create a virtual switch, we first create a
virtual interface br0. As we want host only network, we do not
bridge br0 with ethO right now.

Normally, the br0 interface does not need an IP address as it is
supposed to function as a virtual switch. But, in our case, as we
would like to manage our virtual switch to take part in layer 3
routing of IP packets, we assign an IP address to it. We assign
br0 to a local IP address, which will be the gateway of all virtual
machines.

We then try to connect brO with virtual machines so that packets
from a virtual machine can reach br0 and vice versa. But, virtual
machines’ NIC (ethO in each virtual machine of Figure 4) can
only process Ethernet frames. In non-virtualized environments,
the physical NIC interface (ethO of host machine) will receive
and process the Ethernet frames. It will strip out the Ethernet
related overhead bytes and forward the payload (usually IP
packets) further up to the OS. With the virtualization however,
this will not work since the virtual NICs would expect Ethernet
frames. We solve this by using tap interfaces. Tap interfaces are
special software entities which tell the physical NIC interface to
forward Ethernet frames as it is to virtual NICs. In other words,
the virtual machines connected to tap interfaces will be able to
receive raw Ethernet frames. We manage a virtual bridge
connection of br0 to virtual NICs through tap interfaces by
using Linux brctl [24]. We automate all these steps so that the
virtual network connection can be done automatically whenever
a new virtual machine is added.

Now, br0 is connected to many virtual machines. We have
discussed so far about layer 2 level connections. From the
viewpoint of layer 3, the br0 interface will be the same network
with all virtual machines and it will be the gateway for all
virtual machines. The interface, ethO of host machine will be on
a different network and as we do not bridge it directly with br0,
we connect br0 and ethO through NAT (Network Address
Translation) managed by Access Controller. Access Controller
implemented by iptables controls all networking related
operations such as NAT and outbound traffic from each virtual
machine.

IoTBOX as a stand-alone multi-architecture sandbox: In this
case, Access Controller controls NAT and outbound traffic from
each virtual machine such as C&C communication, the DNS
resolution and the attack traffic such as DoS. We block all
outgoing DoS traffic from malware except allowing some DNS
and HTTP traffic of a maximum of 5 packets per minute.
23/TCP scans are redirected to Dummy Server, which is indeed
[IoTPOT. In this way, we can monitor how the propagation over
Telnet is done.

Analysis Report outputs the results of pcap analysis results for
every 24 hours showing total number of packets, the start time
and the end time of packet captures, data byte/bite rate, the
average packet size and the rate and the total number of a victim
IP address for each attack. In addition, commands strings from
C&C are summarized if any.

IoTBOX as a high interaction system in IoTPOT: In this
case, Access Controller will accept only an incoming connection
from Frontend Responder’s 1P addresses and all outbound

IPSJ SIG Technical Report

traffics from high interaction systems except corresponding
replies of commands redirected by Frontend Responder will be
blocked. Please also note that what Manager in Figure 3 is
doing is exactly the same as Access Controller we have
discussed here.

eth-0

Access Controller

Analysis
report

Virtual Switch

tap-Otap-1 tap-2tap-3 tap-4
Cross-Compile [Environment

QEMU

MIPS\CPU Power PC|-CPU Sparc-CPU
T

] [[§
eth- eth-0 eth-0 etho eth-0
Debian
ARM

ARM-CPU MIPSEL-CPU

OpenWRT OpenWRT Debian Debian
MIPSEL MIPS PPC Sparc

Figure 4 - Overview of cTBOX

4.2 Analysis Results by IoTBOX

Using IoTBOX, we analyzed 52 selected malware binaries of 8
CPU architectures. Because of limited resources of [oTBOX,
malware binary for popular CPU architectures of embedded
devices such as ARM, MIPS and MIPSEL focused more in
analysis. Please refer to Appendix for the information of
analyzed malware samples. Red colored samples show analyzed
binaries.

We observed 25 of 52 malware binaries performed 11 different
types of DoS attacks and 3 different types of scans such as the
Telnet scan and scans on TCP ports such as 23,80,8080, 5916
and UDP port such as 123, 3143. The 5 samples cannot be
executed because of errors.

A summary of the observed attacks is illustrated in Figure 5.
Most attacks we observed were UDP floods and many different
types of TCP floods. We also observed UDP floods against
multiple destination ports, which seemed to aim at flooding the
target network. Interestingly, we also observed a DNS water
torture attack [25], SSL attacks [26] and other two unknown
DNS based attacks in which a large number of queries to an
unknown type of DNS resource records (RR) were sent to an
authoritative name server of a popular ISP. Sample Bin 43
exhibits a unique functionality of a fake web hosting. Namely, it
starts hosting a web page that looks like a top page of a popular
Chinese search engine “baidu.com”. In order to avoid any
misuse of the fake web page in a real attack, we carefully
monitor if any incoming connections appear although nothing
has been seen yet. One more point we notice is that Bin 13, 19,
and 22 of Appendix have a backdoor port 5000/UDP open for
further remote control of the compromised host because the
initial intrusion route, the Telnet, would already have been
blocked by iptables during the infection phase to prevent other
attackers from compromising the host.

15A107f

5. Analysis on Attacks
5.1 Overview of Observed Attacks

Binary ID
Attack Types

N
Mo
raaa

h R
N e

S0

.'Il\
/‘ ACK Flood
Syn-Ack Flood
FSRP Flood
Unknown DNS Attack
1
Unknown DNS Attack
2
2
UDP Scan
(Ports 123,3143)
TCP Scan
(Ports 80, 8080, 5916)

Figure 5 - Observed attacks by IloTBOX

iy

Bin - 60

Bin - 64

i

Bin - 100

Figure 6 depicts the overview of Telnet-based attacks observed
by IoTPOT and IoTBOX. In order to understand the overview of
Telnet attacks observed by our honeypot, we make mappings
between different patterns of intrusion and infection behaviors
observed by IoTPOT and monetization behaviors observed by
malware analysis with IoTBOX. For example, the intrusion
pattern “Fixed Order 3”, which is shown in Table 2, is always
followed by the infection pattern “ZORRO 47, explained in
Table 3. Then, infection pattern “ZORRO 4” ends up
downloading one of the binaries from certain clusters of binaries
that contain common strings, which will eventually exhibit a
similar monetization behavior, namely DoS attacks. These
mappings reveal that the related patterns and behaviors of
attacks can be separated into five major groups, referred to as
five corresponding malware families. We also notice that some
families seem to spread more aggressively than others. Namely,
even within one month of operation, the ZORRO family has
updated its Telnet command sequences twice. This family also
has increased the diversity of binaries from 7 architectures to 9
architectures dramatically to support more CPU architectures.
Following are our findings.

1) We have observed five malware families whose intrusion,

infection, and malware binaries are independent from each
other.

2) From viewpoint of monetization, the different families
share the same goal of performing DoS attacks and scans.

IPSJ SIG Technical Report

The only exception is Bin 43 that starts to host a fake
search engine.

3) Some families seem to spread more aggressively than
others. Namely, as in Figure 6, ZORRO, GAYFGT and
nttpd familes have updated command sequences twice
during the observation period. Also, the GAYFGT family
has increased the diversity of binaries to support more
CPU architectures.

Intrusion

y Infection
N command sequences patterns
(|d_|/—pglss ;hallenge patterns (d
in Table 2) in Table 3)
2015/01

Downloaded Binaries (Bin 1 to 43 are
grouped by characteristic strings in
Table 4)

2015/01to 2015/04 ZORRO 1

Fixed
Order 1
2015/06

Fixed
Order 3

ZORRO Family

ZORRO 3

2015/06

ZORRO 4

2014/11to 2015/06

\ 2015/06

2015/06

2014/11to 2015/06

Random
Order 1

GAYFGT Family

2015/06

ARM
2015/01
Bin 1

8 Architectures

7 Architectures

(«

No
Authentication
@ 2015/06
2015/06
*.sh Family One (Bin
Authentication 50-54
Q0uro2 5 Architectures,
2015/06 (((((-~
94-98
Random
2015/08 8 Architectures /
((((Bin /
99-106
2015/04 MIPS
2015/04 Nttpd 1 2015/04 Tzn -
Fixed
nttpd Family Order 2 2015/05 MIPS
ool Netod 2 2015/05 Bin
id 44
‘ 2015/04 2015/04 MIPS
KOS Family Random 2015/04 Bin
Order 2 Kos 43

Figure 6 - Overview of Observed Attacks by IoTPOT and IoTBOX

5 Architectures’

Monetization (behaviors in

sandbox in Figure 5)

UDP (port
123, 3143)
Scan

Fake Web
Hosting

15A107f

IPSJ SIG Technical Report

5.2 Overview of an Attacking Botnet
5.2.1 Botnet Architectures

Figure 7 shows the overview of a botnet attacking IoTPOT.
Basically, scanning hosts, we call as Scanners (S), perform
Internet wide Telnet scans in order to find hosts listening on
Telnet for further infections. After successful Telnet login, the
intruding host (I) intrudes the victim sending a sequence of
commands over Telnet in order to make the victim machine
download the malware binary from a malware download server
(D). Downloaded binary is run and after the infection, the victim
receives commands from Command and Control Server (C) to
perform various DoS attacks and scans. These S, I, D and C can
be different hosts or the same host. For example, a single host
may perform as (S, I, D) or (D and C) are single host while S
and I are different hosts. By analyzing S, I, D and C involving
IoTPOT, we found 8 different botnet architectures as follows:
1) Botnet relating to the ZORRO family has many host
performing scanning only and few I, D and C of
different combinations (B1, B2, B3 of Figure 7).

2) Botnet of GAYFGT and *.sh families have many hosts
performing both scanning and intruding while D and C
are same or separate hosts. (B4 and B5 of Figure 7).

3) The propagation of the nttpd family looks alike warm
infection in which the attacking host itself is a scanner,
an intruder and a malware download server (B6 in
Figure 7). There are also cases in which the scanning
and the intruding host make victim infect by sending
malware binary over Telnet. In such a case, it is not
necessary to download malware binary from a
malware download server (B7 in Figure 7).

4) The botnet of KOS family has many hosts performing
both scanning and intruding while D and C are
separate hosts (B8 of Figure 7). C can be connected by
resolving the “s6.kill123.com” domain. In order to
resolve the domain, the authoritative name server IP
address of “S6.kill123.com” is hard coded in nttpd
malware (bin 44 of Appendix). This authoritative
name server is not reachable through normal
authoritative name server DNS stacks. In this way,
attacker set up an authoritative name server as part of

his or her botnet.

B2
Botnet architectures of ZORRO family

(
L

D D O
N/ Y
G G

Botnet architectures of nttpd family

B3
CeD

B6 B7

1= Intruder

D = Malware Download Server
C=C ‘ontrol Server
S = Scanner
DNS= Authoritative DNS Server

Botnet architecture of KOS family

Ficure 7 - Botnet Architectures

15A107f

6. Related Works

We implemented the first honeypot tailored for IoT devices,
IoTPOT, and to the best of our knowledge, there is still no
honeypot like IoTPOT that mimics IoT devices of many
different CPU architectures while listening on 23/TCP with the
ability to learn unknown command interactions. Although
Honeyd [22] listens on 23/TCP, it is a low-interaction honeypot
and cannot handle not only Telnet options but also command
interactions interactively, as explained in Sect. 3.4.2. Although
there is another honeypot known as the Telnet password
honeypot [27], its main focus is collecting Telnet password and
command interactions are not supported. Other popular low
interaction honeypots such as Dionaea [28] and Nepenthes [29]
do not support Telnet. Kishimoto et al. [30] propose a novel
honeypot that dynamically assigns an IPv6 address to
appropriate high interaction honeypots by checking the
destination IP address of an incoming NS message which
includes the vendor information. SGNET [31] is a honeypot
system that has distributed low-interaction sensors to handle
known attacks. Its centralized backend high-interaction
honeypots handle unknown attacks redirected from the
distributed sensors. The conceptual mechanism of IoTPOT is
similar to SGNET and the IPv6 honeypot mentioned above. As
in SGNET, Frontend Responder of IoTPOT responds to known
attacks and unknown attacks are redirected to IoTBOX. As in
the IPv6 honeypot, it tries to deal with different hosts and
devices. The main difference between [oTPOT and these
existing honeypots is that [oTPOT implements the functionality
to perform an automated active scanning of the attacking IP
addresses to learn their interactions, namely banner profiles.
With this functionality, we can obtain and enrich profiles for
presumably vulnerable and infected devices, which is essential
for monitoring diverse IoT threats. In other words, [oTPOT
learns the banners from vulnerable devices to pretend to be
themselves. Moreover, as an initial goal, we highly focus on
Telnet attacks which are emerging threats according to the
recent observations of darknet as explained in Sect. 2, emulate
the Telnet services of a large variety of IoT devices to attract
attacks, and succeed to observe the ongoing attacks to the depth
of capturing the malware binaries, which are hardly included in
a large malware database like Virus Total. In order to analyze
the captured malware binaries, we also implemented [oTBOX,
the first sandbox that runs malware of 8 different CPU
architectures. Out of more than 15 surveyed sandbox systems in
[32], none support different CPU architecture such as MIPS,
ARM.

The main differences of the proposed method against existing
works are as follow:

1) IoTPOT implements the functionality to perform an
automated active scanning of the attacking IP
addresses to obtain their banner profiles. With this
functionality, we can obtain and enrich profiles for
presumably vulnerable and infected devices, which is
essential for monitoring diverse IoT threats. In other

IPSJ SIG Technical Report

words, IoTPOT “learns” the banners from vulnerable
devices to pretend to be themselves.

2) Although the mechanism 1is similar to existing
honeypots, we are the first to focus on a Telnet-based
honeypot that can handle banner interactions,
authentication interactions and command interactions
till the depth of attacks where actual malware binaries
can be captured for a detailed analysis.

3) We propose [oTBOX, a multi-architecture malware
sandbox that is used as a high interaction system as a
component of [oTPOT and also independently used as
a malware sandbox for analyzing captured binaries.

4) We succeeded to report for the first time about details
of currently menacing IoT threats targeting vulnerable
IoT devices over the world while capturing IoT
malware that are hardly included in the existing
malware database of Virus Total. We also reveal their
monetization behaviors and architectures as botnet.

7. Conclusion and Future Works

We have shown that IoT devices are susceptible to compromises
and increasingly are also the target of malware on the masses.
We identified five malware families, which show worm-like
spreading behavior, all of which are actively used in DDoS
attacks.

As future work, we plan to extend IoTPOT to support more
protocols that are likely the target of attacks, such as SSH.
Furthermore, we aim to extend the sandbox with capabilities to
stimulate even more architectures and environments that are
common on IoT devices.

Reference

[1] A.Cuiand S. Salvatore J., “A quantitative analysis of the
insecurity of embedded network devices: results of a
wide-area scan.” [Online]. Available:
http://ids.cs.columbia.edu/sites/default/files/paper-acsac.
pdf. [Accessed: 24-May-2015].

[2] “Internet Census 2012.” [Online]. Available:
http://internetcensus2012.bitbucket.org/paper.html.
[Accessed: 24-May-2015].

[3] “DailyTech - Hackers Use Refrigerator, Other Devices to
Send 750,000 Spam Emails.” [Online]. Available:
http://www.dailytech.com/Hackers+Use+Refrigerator+Ot
her+Devices+to+Send+750000+Spam-+Emails+/article34
161.htm. [Accessed: 24-May-2015].

[4] “Lizard Stresser Runs on Hacked Home Routers —
Krebs on Security.” [Online]. Available:
http://krebsonsecurity.com/2015/01/lizard-stresser-runs-o
n-hacked-home-routers/. [Accessed: 24-May-2015].

[5] “BusyBox.” [Online]. Available:
http://www.busybox.net/. [Accessed: 30-Oct-2015].

[6] “VirusTotal - Free Online Virus, Malware and URL
Scanner.” [Online]. Available:

15A107f

https://www.virustotal.com/. [Accessed: 24-May-2015].

[71 E. Masashi, I. Daisuke, S. Jungsuk, N. Junji, O. Kazuhiro,
and N. Koji, “nicter: a large-scale network incident
analysis system: case studies for understanding threat
landscape,” BADGERS 11 Proc. First Workshop Build.
Anal. Datasets Gather. Exp. Returns Secur.

[8] M.E.L.and T. L. D., “The Carna Botnet Through the
Lens of a Network Telescope,” Proc. 6th Int. Symp.
Found. Pract. Secur. FPS 2003 Oct. 2013, Oct. 2013.

[9] “pOfv3.” [Online]. Available:
http://Icamtuf.coredump.cx/p0f3/. [Accessed:
24-May-2015].

[10] “RFC 854 - Telnet Protocol Specification.” [Online].
Available: https://tools.ietf.org/html/rfc854. [Accessed:
24-May-2015].

[11] “robertdavidgraham/masscan - GitHub.” [Online].
Available:
https://github.com/robertdavidgraham/masscan.
[Accessed: 24-May-2015].

[12] “List of applications of ARM cores,” Wikipedia, the free
encyclopedia. 30-Sep-2015.

[13] “List of MIPS microarchitectures,” Wikipedia, the free
encyclopedia. 17-Sep-2015.

[14] “PowerPC applications,” Wikipedia, the free
encyclopedia. 18-Dec-2012.

[15] “SuperH,” Wikipedia, the free encyclopedia.
30-Sep-2015.

[16] “SuperH RISC engine Family | Renesas Electronics.”
[Online]. Available:
http://www.renesas.com/products/mpumcu/superh/index.j
sp. [Accessed: 03-Nov-2015].

[17] “netfilter/iptables project homepage - The netfilter.org
project.” [Online]. Available: http://www.netfilter.org/.
[Accessed: 03-Nov-2015].

[18] “Remote Code Execution in Popular Hikvision
Surveillance DVR | Threatpost | The first stop for
security news.” [Online]. Available:
https://threatpost.com/remote-code-execution-in-popular-
hikvision-surveillance-dvr/109552. [Accessed:
24-May-2015].

[19] “Index of /~aurel32/qemu/mipsel.” [Online]. Available:
https://people.debian.org/~aurel32/qemu/mipsel/.
[Accessed: 04-Nov-2015].

[20] “OpenWrt.” [Online]. Available: https://openwrt.org/.
[Accessed: 30-Oct-2015].

[21] “QEMU.” [Online]. Available:
http://wiki.qemu.org/Main_Page. [Accessed:
30-Oct-2015].

[22] “Developments of the Honeyd Virtual Honeypot.”
[Online]. Available: http://www.honeyd.org/. [Accessed:
24-May-2015].

[23] “Linux Bridge and Virtual Networking - Blogs by
Sriram.” .

[24] “bretl.” [Online]. Available:
http://linuxcommand.org/man_pages/brctl8.html.
[Accessed: 02-Nov-2015].

10

IPSJ SIG Technical Report

[25] Secure64, “Water Torture: A Slow Drip DNS DDoS
Attack « Cybersecurity « Cyber Trust Matters.” .

[26] “DDoS Attacks on SSL: Something Old, Something
New.” [Online]. Available:
http://asert.arbornetworks.com/ddos-attacks-on-ssl-somet
hing-old-something-new/. [Accessed: 24-May-2015].

[27] “zx2c4/telnet-password-honeypot - GitHub.” [Online].
Available:
https://github.com/zx2c4/telnet-password-honeypot.
[Accessed: 24-May-2015].

[28] “dionaea — catches bugs.” [Online]. Available:
http://dionaea.carnivore.it/. [Accessed: 24-May-2015].

[29] “home [Nepenthes - finest collection -].” [Online].
Available: http://nepenthes.carnivore.it/. [Accessed:
24-May-2015].

[30] K. Kishimoto, K. Ohira, Y. Yamaguchi, H. Yamaki, and
H. Takakura, “An adaptive honeypot system to capture
ipv6 address scans,” in Cyber Security (CyberSecurity),
2012 International Conference on, 2012, pp. 165-172.

[31] C. Leita and M. Dacier, “SGNET: a worldwide
deployable framework to support the analysis of malware
threat models,” in Dependable Computing Conference,
2008. EDCC 2008. Seventh European, 2008, pp. 99—109.

[32] “malware.dvi - malware_survey.pdf.” [Online].
Available: https://iseclab.org/papers/malware_survey.pdf.
[Accessed: 04-Nov-2015].

Yin Minn Pa Pa received B.E. in Information
Technology in 2006 from Mandalay
Technological ~ University, Myanmar and
M.Phil. in Infrastructure Management in 2013
from Yokohama National University, Japan.
She is currently Ph.D. candidate of Information
Media and Environment Science Course of Graduate School of
Environment and Information Sciences, Yokohama National University.
She is going to finish her Ph.D. in March 2016. Her research interest is
network security. She received best paper award in Asia-JCIS, 2013 and
best technical report award of the year by Information and

Communication System Security (ICSS) 2013, Japan.

Shogo Suzuki is currently second year Master
student of Information Media and Environment
Science Course of Graduate School of
Information

Environment and Sciences,

Yokohama National University. He is going to

finish his M.E in Computer Engineering in

March 2016. His research interest is network security.

Takahiro Kasama received his B.E. and M.E.

and Ph.D. degrees in Computer Engineering from

== Yokohama National University in 2009 and 2011,
L 2014, respectively. He is currently a researcher at
& the National Institute of Information and
Communications Technology, Japan. His research

interest covers a wide area of network security

15A107f

including network monitoring and malware analysis. He received the
Best Paper Award at the Computer Security Symposium 2010
(CSS2010), and the IPSJ Yamashita SIG Research Award in 2011.

Katsunari Yoshioka received the B.E., M.E. and
Ph.D. degrees in Computer Engineering from
Yokohama National University in 2000, 2002,
2005, respectively. From 2005 to 2007, he was a

Researcher at the National Institute of

Information and Communications Technology,

Japan. Currently, he is an Associate Professor for Division of Social
Environment and Informatics, Graduate School of Environment and
Information Sciences, Yokohama National University. His research
interest covers a wide range of information security, including malware
analysis, network monitoring, intrusion detection, and information
hiding. He was awarded 2009 Prizes for Science and Technology by
The Commendation for Science and Technology by the Minister of

Education, Culture, Sports, Science and Technology.

L i Tsutomu Matsumoto is a professor of the Graduate
School of Environment and Information Sciences,
Yokohama National University and directing the
Research Unit for Information and Physical Security

at the Institute of Advanced Sciences. He received

Doctor of Engineering from the University of Tokyo
in 1986. Starting from Cryptography in the early 80’s, he has opened up
the field of security measuring for logical and physical security
mechanisms. Currently he is interested in research and education of
Embedded Security Systems such as Smartcards, Network Appliances,
Mobile

Artifact-metrics. He is serving as a program officer of the JSPS

Terminals, In-vehicle Networks, Biometrics, and
Research Center for Science Systems, the chair of Japanese National
Body for ISO/TC68 (Financial Services), and a core member of the
Cryptography Research and Evaluation Committees (CRYPTREC). He
was a director of the International Association for Cryptologic Research
(IACR) and the chair of the IEICE Technical Committee on Information
Security and served as an associate member of the Science Council of
Japan (SCJ). He received the IEICE Achievement Award, the DoCoMo
Mobile Science Award, the Culture of Information Security Award, the

MEXT Prize for Science and Technology, and the Fuji Sankei Business

Eye Award.

Dr. Christian Rossow graduated in Computer
Science in 2013 at the VU Amsterdam, The
Netherlands. Since 2014, he leads the "System
Security" Research Group at Saarland
University, Germany. He also holds a Guest
Associate Professorship at YNU University,
Japan. His research focuses are binary analysis, malicious software and

network security.

11

IPSJ SIG Technical Report

15A107f

Familly name BinarylD Filename Hash(md5) Architecuture___|Date of Capture| Existance in VirusTotal | Detection Ration in VirusTotal First sub. Last sub.
Bin 1 wharm __|e94f48285¢0442739505889922def55 ARM 2015/01 YES 0/56 1/12/2015 23:50 1/12/2015 2350
Bin 2 telnet.arm _|4101d096094fa7f3b35a14ceeBo5d6bb ARM 2015/04 NO
Bin 3 telnet.m68k | 2d4c6238ad43bfocd668467¢16846196 M68K 2015/04 NO
Bin 4 telnetmp _|50091alc1311aa37443027a315066315 MIPS 2015/04 NO
ZORRO Bin 5 telnetmps _|ach79b0810acb8e 1 db298cd678533840 MIPSEL 2015/04 NO
Bin 6 telnetppc_ |8e654a673d4bddBac]6c39F7ad654e1b Power PC 2015/04 NO
Bin 7 telnet.sh4_|606295389061b1c80e0cT8b674808a6 SHa 2015/04 NO
Bin 8 telnet.sparc_|9918dba3e5737d25424b05b9710b16c0 SPARC 2015/04 NO
Bin 9 tolnet.x86 | 792d38b67dd89d65d35d1601cd 1 c2ba7 x86 2015/04 NO
Bin 10 arm ___[f/3dabele33762f09d74¢2d3d16c5¢50 ARM 2014/11 YES 7/57 1/14/2015 18:30 1/14/2015 18:30
Bin 11 586 [66113dc9a538667020c0ca68a92546b8 1586 2014/11 NO
Bin 12 1686 |6d9f712308692087bdb2822¢44854cef 86 2014/11 NO
Bin 13 mips_|c58625360794355fc77c18b1688d4d01 MIPS 2014/11 YES 6/57 3/10/2015 8:41 3/10/2015 8:41
Bin 14 mipsel 43e0635adadfe 7747606974 MIPSEL 2014/11 NO
Bin 15 sparc___|738db9f6b9debd08976¢aadbbf16117 SPARC 2014/11 NO
Bin 16 superh _|a12¢7f584177fb5d229707c507f7fal2 Super H 2014/11 NO
Bin 17 arm 06b2fbecdeTachc1370753543b7d2621 ARM 2015/04 NO
Bin 18 1586 |b7b299fdffbbaabd184ab4d8e69a4d98 x86 2015/04 NO
Bin 19 1686 |4061432ae8b37171af033d5185b31659 x86 2015/04 NO
Bin 20 mips___|3fo4bdb902e08636568179803620767 MIPS 2015/04 NO
Bin 21 mips64___|febb3f2aec98e96c1321a681 1ac05al8 MIPS64 2015/04 NO
Bin 22 mipsel __|94b2¢00fo4c11abd77fb76fd5815d1do MIPSEL 2015/04 NO
Bin 23 ppo 06940d099751304c 7047231245978 Power PC 2015/04 NO
Bin 24 sparc___|d76cf4f0f37395906df4d2c0defod923 Super H 2015/04 NO
Bin 25 arm 1549aed9b818b6a994dc5Mbbodabfaz ARM 2015/04 NO
GAYFGT Bin 26 1586 |daab490a0a0a0a2b2528b18dachf66ed x86 2015/04 NO
Bin 27 1686 |8a2b06d4ba8bB8cab092801fbobfdbd *86 2015/04 NO
Bin 28 mips___|6132f7a0d4b7643fb03da750f5a1329 MIPS 2015/04 NO
Bin 29 mipsb4__ |ee7d764767c25d4c54bed4f18a5aadTd MIPS64 2015/04 NO
Bin 30 mipsel__|490968447a603c3664186164c99c 14be MIPSEL 2015/04 NO
Bin 31 ppC 269566d69307c3e5b33458cd8 11d693 Power PC 2015/04 NO
Bin 32 Sparc___|1320560575209cfoc3r146b84517feb Super H 2015/04 NO
Bin 33 arm 032¢c8869¢235bfaBa8dfe 7b125a02b6 ARM 2015/05 NO
Bin 34 1586 |86f9fc4e914d358d05bd5d1d93a0d673 *86 2015/05 NO
Bin 35 1686 |clefldd4232e14c4566160a82076867¢ x86 2015/05 NO
Bin 36 mips _|a41867fbfB8e2358ba5551509907b288c MIPS 2015/05 NO
Bin 37 mips32__|77b73b0fe4a79dfc284fceb5b3cbesb MIPS32 2015/05 NO
Bin 38 mips64__|d31261199d16b7ad82e0f87094de6e07 MIPS64 2015/05 NO
Bin 39 mipsel _|o652fe5e53chaBc450ee6730740808¢ MIPSEL 2015/05 NO
Bin 40 ppc___ |52f9bd74d63888182fbab 15443070898 Power PC 2015/05 NO
Bin 41 sparc___|be35cd9d4c60476940e6c58a961b0b8 SPARC 2015/05 NO
nttpd Bin 42 nttpd___|bbf1327c1a5213b41a4d22c4b4806f7c MIPSEL 2015/05 YES 0/57 2/18/2015 1724 3/20/2015 15:17
KOS Bin 43 12258196 |ec381bb5fb83b160fb 1eb493817081c1 MIPS 2015/05 NO
nttpd Bin 44 nttpd___|d979720bfdf4207e50b3a161506e4306 2015/06 NO
Bin 45 armp___|decdbf949c3b107dc3a973015269edd6 ARM 2015/06 NO
Bin 46 mipselp _|67abda7e85c838448calf7915dfc6b17 MIPSEL 2015/06 NO
Bin 47 mipsp___|de31e34c2¢576198026354704ac00e54 MIPS 2015/06 YES 2/57 6/2/2015 19:44 6/2/2015 19:44
Bin 48 ppop___ | 4dcfba3c38863e647162178137e8eb8 PPC 2015/06 YES 2/57 6/2/2015 19:40 6/2/2015 19:40
eh Bin 49 shp afodal20e09486932962b27a900e6 1 SHa 2015/06 YES 4/57 6/2/2015 19:35 6/3/2015 6:59
- Bin 50 armm__|10435276ffabed8d753527cocfe398a4 ARM 2015/06 YES 6/56 6/1/2015 7:48 6/1/2015 7:48
Bin 51 mipselm _|fele5c05fb6abe21f9075al3ealbec’9 MIPSEL 2015/06 YES 3/56 6/1/2015 7:48 6/1/2015 7:48
Bin 52 mipsm__|1616d1ccadoch 9 MIPS 2015/06 YES 7/57 6/1/2015 7:49 6/5/2015 8:34
Bin 53 ppom ___|ac86abal87738d9d19c482bbbf24f148 PPC 2015/06 YES 2/56 6/1/2015 7:48 6/1/2015 7:48
Bin 54 shm d0173670619c65 1011d4683a68217d SHa 2015/06 YES 4/56 6/1/2015 7:47 6/1/2015 7:47
Bin 55 568 |6bbbedd07979¢547do528a2143a0bf4f *86 2015/06 NO
Bin 56 668i__|3ead0f86731993fcBcf4f94159805990 86 2015/06 NO
Bin 57 olimps __ |b5665875a¢7eb40809384146a8bb6784 MIPSEL 2015/06 NO
Bin 58 husper __|F17a8106fa6129c5aa7f374bed69276 Super H 2015/06 NO
Bin 59 mar___|270307434797688b83 16280671886 ARM 2015/06 NO
Bin 60 pep 129b0be5bf9008095939dbBda7c34d4e Power PC 2015/06 NO
GAYFGT Bin 61 racps__ |b30b75d52deed57cco825749226ec8e3 SPARC 2015/06 NO
Bin 62 Sipm __ |5768776702514580793aac478aadb811 MIPS 2015/06 NO
Bin 63 a f47b27ed72f1284743d154399c04acab ARM 2015/06 YES 10/57 6/13/2015 15:16 6/13/2015 15:16
Bin 64 m 3389954 149940303a530d3b44d7a844 MIPS 2015/06 NO
Bin 65 mi 16679226674968494a63245e 202563 MIPSEL 2015/06 NO
Bin 66) 0d52132275d204363d8b29eb379a2ea Power PG 2015/06 NO
Bin 67 s ffeabec00fBab522¢e1 ¢ 73ab8d4ad36b SH4 2015/06 NO
Bin 68 ayyarm __|112baced64abe873622664c53d3040 ARM 2015/06 NO
Bin 69 ayy.m68k__|6f35aefa8cd78b2c9ded814e0129bfd3 M68K 2015/06 NO
Bin 70 ayymp _|207b9b239860922856d25676321d2670 MIPS 2015/06 NO
Bin 71 ayym___|70f75280ba311993229db3ce 1d066698 MIPSEL 2015/06 NO
Bin 72 ayyppe__ |4003623080¢1ad32044118336325d84 Power PC 2015/06 NO
Bin 73 ayy.sh4 _ |e6caB9e393a6570adadc4208c3664173 SHa 2015/06 NO
Bin 74 ayy.sparc__|13ae92a808394938811¢3711b2¢9d5b4 SPARC 2015/06 NO
ZORRO Bin 75 ayyx86__|7df780f115ce0d3219e7b0a55239abd4 x86 2015/06 NO
Bin 76 scanner.arm | 14b32dd3d4dc8927c812c2eeebbaazle ARM 2015/06 NO
Bin 77 scanner.m68k |63ecd54306¢26d8f47 1bdb0adac0ab51 M68K 2015/06 NO
Bin 78 scannermp_|b147c04245d701669c89d6836a240c33 MIPS 2015/06 NO
Bin 79 scanner.mps | 73ad21e470abad3da2ach39762 16683 MIPSEL 2015/06 NO
Bin 80 scanner.ppc_|56b0feec4e28276141ec0b93b6f21aaa Power PC 2015/06 NO
Bin 81 scanner.sh4_|493cb7e9477073786b13ed0d93de0f4T SHa 2015/06 NO
Bin 82 scannerx86_|fcc3292ffe2dc796573229b0d8d6d939 *86 2015/06 NO
Bin 83 a bob8f09861002F322656697d1e1eb5%2 ARM 2015/06 NO
Bin 84 m f81a141beeddi2ad869666e9d219407 MIPS 2015/06 NO
Bin 85 mi 4062fd5532d6ece299¢a33ddb3a9311d MIPSEL 2015/06 NO
Bin 86 ppo. 668790bfoodb567b5713a8d2786c079 PPC 2015/06 NO
Bin 87 sh 20514d5adb35d266b8b4 774853774021 SHa 2015/06 NO
GAYFGT Bin 88 armv6l__|bec309444d2306b2b6f3cedObcddb272 ARM 2015/06 NO
Bin 89 1686 |¢04781bd52095450259¢0f3a3986460 *86 2015/06 NO
Bin 90 mips ___|470a70b8dd9aa3b0f1 ec36435abe96b7 MIPS 2015/06 NO
Bin 91 mipsel __|2ef109f1b12493a3c4f6bb18f9c62784 MIPSEL 2015/06 NO
Bin 92 shd 0310bf072f90c33838¢0f0505b62758 SHa 2015/06 NO
Bin 93 x86.64__|3f4dbbddbf3elcbb4caddeb5bb2027c1 86 2015/06 NO
Bin 94 armm__|0c2f8d1015101ac6fd7c3dc13bfdfe57 ARM 2015/06 NO
Bin 95 mipselm_|ffa457c5a61bccb07ad58d0eae3b701 MIPSEL 2015/06 NO
Bin 96 mipsm___|654ff5d3b63141a03176683ff753819d MIPS 2015/06 NO
Bin 97 ppom ___|b6dbd4429c86915af58fad14bbf5fc02 PPC 2015/06 NO
Bin 98 shm 3ebo1586ac4b91ab37b5d84dd7d4abo SH4 2015/06 NO
Bin 99 niggerarm _|fb7cefb47be606690c9d24708db7e435 ARM 2015/06 YES 5757 6/22/2015 21:12 6/22/2015 21:12
*.sh Bin 100 niggeri686 d81cfcad 7 x86 2015/06 NO
Bin 101 niggermips_|a0e8dae911ce7aBbcfcfe7c3d534573b MIPS 2015/06 NO
Bin 102 niggermips64 | 761227176c4397dabc8763ded16c194d MIPSEL64 2015/06 YES 1757 6/22/2015 21:13 6/22/2015 21:13
Bin 103 niggermipsel |a9c066dbb2205e12a6985476682391ba MIPSEL 2015/06 YES 5756 6/22/2015 21:12 6/22/2015 21:12
Bin 104 niggerppc_|fod714d569¢099079b5bb3c17e76dcb1 PPC 2015/06 YES 3757 6/22/2015 21:12 6/22/2015 21:12
Bin 105 niggersh _|566bece2814168801e3662¢53929624 Super H 2015/06 NO
Bin 106 niggerx86__|8b0dbdi 74 x86 2015/06 YES 3/55 6/26/2015 3:08 6/26/2015 3:08

12

